Common Queries Quickstart
To access information about a model's performance, drift, bias, or other enabled enrichments, write a query
object and submit it with the Arthur SDK using arthur_model.query(query)
For a general overview of this endpoint, including a more thorough description of its rules, power, and customizability, see the Fundamentals.
In each of the following examples, let our model be a binary classifier, and let GT1
and PRED1
be the names of our model's ground truth attribute and predicted value.
Accuracy
This is usually the simplest way to check for classifier performance. We can fetch a model's accuracy rate by querying a select
on the function accuracyRate
using the typical threshold 0.5
.
Given the following query:
GT1 = 'gt_isFraud'
PRED1 = 'pred_isFraud'
query = {
"select": [
{
"function": "accuracyRate",
"parameters":
{
"threshold" : 0.5,
"ground_truth_property" : GT1,
"predicted_property" : PRED1
}
}
]
}
query_result = arthur_model.query(query)
The query_result
will be:
[{'accuracyRate': 0.999026947368421}]
Accuracy by batch
To expand the accuracy query by batch, add the batch_id
property to the query's select
, and add a group_by
to the query using batch_id
.
Given the following query:
GT1 = 'gt_isFraud'
PRED1 = 'pred_isFraud'
query = {
"select": [
{
"function": "accuracyRate",
"parameters":
{
"threshold" : 0.5,
"ground_truth_property" : GT1,
"predicted_property" : PRED1
}
},
{
"property": "batch_id"
}
],
"group_by": [
{
"property": "batch_id"
}
]
}
query_result = arthur_model.query(query)
The query_result
will be:
[{'accuracyRate': 0.999704, 'batch_id': 'newbatch3'},
{'accuracyRate': 0.999744, 'batch_id': 'newbatch0'},
{'accuracyRate': 0.992952, 'batch_id': 'newbatch19'},
{'accuracyRate': 0.999616, 'batch_id': 'newbatch5'},
{'accuracyRate': 0.999144, 'batch_id': 'newbatch6'},
...]
Batch IDs
Querying accuracy by batch includes the batch_id
values in the query result. But to query the batch_id
s on their own, only select
and group_by
the batch_id
.
Given the following query:
query = {
"select": [
{
"property": "batch_id"
}
],
"group_by": [
{
"property": "batch_id"
}
]
}
query_result = arthur_model.query(query)
The query_result
will be:
[{'batch_id': 'newbatch19'},
{'batch_id': 'newbatch18'},
{'batch_id': 'newbatch13'},
{'batch_id': 'newbatch12'},
{'batch_id': 'newbatch16'},
...]
Accuracy (single batch)
To query the accuracy for only one batch, add a filter
to the query according to the rule batch_id == BATCHNAME
Given the following query (for a specified batch name):
GT1 = 'gt_isFraud'
PRED1 = 'pred_isFraud'
BATCHNAME = "newbatch19"
query = {
"select": [
{
"function": "accuracyRate",
"parameters":
{
"threshold" : 0.5,
"ground_truth_property" : GT1,
"predicted_property" : PRED1
}
},
{
"property": "batch_id"
}
],
"group_by": [
{
"property": "batch_id"
}
],
"filter": [
{
"property": "batch_id",
"comparator": "eq",
"value": BATCHNAME
}
]
}
query_result = arthur_model.query(query)
The query_result
will be:
[{'accuracyRate': 0.992952, 'batch_id': 'newbatch19'}]
Confusion Matrix
A confusion matrix counts the number of true positive, true negative, false positive, and false negative classifications; knowing these values is usually more useful than just accuracy when it is time to improve your model.
To query a confusion matrix, we use the confusionMatrix
function in our query's select
.
For the confusionMatrix function, the ground_truth_property and predicted_property parameters are optional.
Given the following query:
query = {
"select": [
{
"function": "confusionMatrix",
"parameters":
{
"threshold" : 0.5
}
}
]
}
query_result = arthur_model.query(query)
The query_result
will be:
[{'confusionMatrix':
{'false_negative': 4622,
'false_positive': 0,
'true_negative': 4745195,
'true_positive': 183}}]
Confusion Matrix (single batch)
As we did with accuracy, to get a confusion matrix for a single batch we add the property batch_id
to the query's select
, add a group_by
using batch_id
, and then add a filter
according to the rule batch_id == BATCHNAME
Given the following query (for a specified batch name):
BATCHNAME = 'newbatch19'
query = {
"select": [
{
"function": "confusionMatrix",
"parameters":
{
"threshold" : 0.5
}
},
{
"property": "batch_id"
}
],
"group_by": [
{
"property": "batch_id"
}
],
"filter": [
{
"property": "batch_id",
"comparator": "eq",
"value": BATCHNAME
}
]
}
query_result = arthur_model.query(query)
The query_result
will be:
[{'batch_id': 'newbatch19',
'confusionMatrix':
{'false_negative': 1762,
'false_positive': 0,
'true_negative': 248238,
'true_positive': 0}}]
Confusion Matrix (by group)
Instead of querying for metrics and grouping by batch, we can group by other groupings as well. Here, we use the model's non-input attribute race
so that we can compare model performance across different demographics. To do this, we add the group name race
to our query's select
and to its group_by
Given the following query:
GROUP = 'race'
query = {
"select": [
{
"function": "confusionMatrix",
"parameters": {
"threshold" : 0.5
}
},
{
"property": GROUP
}
],
"group_by": [
{
"property": GROUP
}
]
}
query_result = arthur_model.query(query)
The query_result
will be:
[{'confusionMatrix': {'false_negative': 1162,
'false_positive': 0,
'true_negative': 1184707,
'true_positive': 44},
'race': 'hispanic'},
{'confusionMatrix': {'false_negative': 1145,
'false_positive': 0,
'true_negative': 1186659,
'true_positive': 49},
'race': 'asian'},
{'confusionMatrix': {'false_negative': 1137,
'false_positive': 0,
'true_negative': 1187500,
'true_positive': 38},
'race': 'black'},
{'confusionMatrix': {'false_negative': 1178,
'false_positive': 0,
'true_negative': 1186329,
'true_positive': 52},
'race': 'white'}]
Predictions
Here we aren't querying any metrics - we are just accessing all the predictions that have output by the model.
Given the following query:
PRED1 = 'pred_isFraud'
query = {
"select": [
{
"property": PRED1
}
]
}
query_result = arthur_model.query(query)
The query_result
will be:
[{'pred_isFraud_1': 0.005990342859493804},
{'pred_isFraud_1': 0.02271116879043313},
{'pred_isFraud_1': 0.15305224676085477},
{'pred_isFraud_1': 0},
{'pred_isFraud_1': 0.03280797449330532},
...]
Predictions (average)
To only query the average value across all these predictions (since querying all predictions and then averaging locally can be slow for production-sized query results), we only need to add the avg
function to our query's select
, with our predicted value PRED1
now being a parameter of avg
instead of a property we directly select.
Given the following query:
PRED1 = 'pred_isFraud'
query = {
"select": [
{
"function": "avg",
"parameters": {
"property": PRED1
}
}
]
}
query_result = arthur_model.query(query)
The query_result
will be:
[{'avg': 0.016030786000398464}]
Predictions (average over time)
To get the average predictions on each day, we add the function roundTimestamp
to our select using a time_interval
of day
- this groups the timestamp information according to day
instead of options like hour
or week
. Then, we add a group_by
to the query using the alias
(DAY
) specified in the roundTimestamp
function.
Given the following query:
PRED1 = 'pred_isFraud'
query = {
"select": [
{
"function": "avg",
"parameters": {
"property": PRED1
}
},
{
"function": "roundTimestamp",
"alias": "DAY",
"parameters": {
"property": "inference_timestamp",
"time_interval": "day"
}
}
],
"group_by": [
{
"alias": "DAY"
}
]
}
query_result = arthur_model.query(query)
The query_result
will be:
[{'avg': 0.016030786000359423, 'DAY': '2022-07-11T00:00:00Z'},
{'avg': 0.018723459201003300, 'DAY': '2022-07-12T00:00:00Z'},
{'avg': 0.014009919280009284, 'DAY': '2022-07-13T00:00:00Z'},
{'avg': 0.016663649020394829, 'DAY': '2022-07-14T00:00:00Z'},
{'avg': 0.017791902929210039, 'DAY': '2022-07-15T00:00:00Z'},
...]
Updated 12 months ago