Default Evaluation Functions
Arthur provides common default metrics for all Model Input / Output Types. A list of each default metric available can be found within each model types page. This page will provide an overview of all of them to show how to query Arthur.
Regression
All regression evaluation metrics will follow the below request body structure.
Query Request:
{
"select": [
{
"function": "[rmse|mae|rSquared]",
"alias": "<alias_name> [optional string]",
"parameters": {
"ground_truth_property": "<attribute_name> [string]",
"predicted_property": "<attribute_name> [string]"
}
}
]
}
Query Response:
{
"query_result": [
{
"<function_name/alias_name>": "<evaluation_value> [float]"
}
]
}
RMSE
Get the RMSE between a prediction attribute and a ground truth attribute.
Sample Request:
{
"select": [
{
"function": "rmse",
"alias": "error",
"parameters": {
"ground_truth_property": "FICO_actual",
"predicted_property": "FICO_predicted"
}
}
]
}
Sample Response:
{
"query_result": [
{
"error": 0.76
}
]
}
MAE
Get the Mean Absolute Error between a prediction and ground truth attributes.
This function takes an optional parameter aggregation
that allows swapping the aggregation from "avg"
to either "min"
or "max"
. This can be helpful if you're looking for extremes, such as the lowest or highest absolute error. Additionally, this function supports optional params normalizationMax
and normalizationMin
that accept numbers and will perform min/max normalization on the values before aggregation if both params are provided.
Query Request:
{
"select": [
{
"function": "mae",
"alias": "<alias_name> [optional string]",
"parameters": {
"predicted_property": "<predicted_property_name> [string]",
"ground_truth_property": "<ground_truth_property_name> [string]",
"aggregation": "[avg|min|max] (default avg, optional)",
"normalizationMin": "<value> [optional number]",
"normalizationMax": "<value> [optional number]"
}
}
]
}
Sample Request:
{
"select": [
{
"function": "mae",
"alias": "error",
"parameters": {
"ground_truth_property": "FICO_actual",
"predicted_property": "FICO_predicted"
}
}
]
}
Sample Response:
{
"query_result": [
{
"error": 0.76
}
]
}
R Squared
Get the R Squared value between a prediction and ground truth attributes.
Sample Request:
{
"select": [
{
"function": "rSquared",
"alias": "rsq",
"parameters": {
"ground_truth_property": "FICO_actual",
"predicted_property": "FICO_predicted"
}
}
]
}
Sample Response:
{
"query_result": [
{
"rsq": 0.94
}
]
}
Binary Classification
When using binary classification evaluation functions with a multiclass model, outputs will be calculated assuming a one vs. all approach.
Confusion Matrix
Calculates the confusion matrix for a classification model. For binary classifiers, users must specify a probability threshold
to count a prediction as a positive class.
Query Request:
{
"select": [
{
"function": "confusionMatrix",
"alias": "<alias_name> [optional string]",
"parameters": {
"threshold": "<value [float]> [required only for binary classifiers]"
}
}
]
}
Query Response:
{
"query_result": [
{
"<function_name/alias_name>": {
"true_positive": "<count> [int]",
"false_positive": "<count> [int]",
"true_negative": "<count> [int]",
"false_negative": "<count> [int]"
}
}
]
}
Sample Request: Calculate the confusion matrix for a binary classifier with a threshold of 0.5 (the standard threshold for confusion matrix).
{
"select": [
{
"function": "confusionMatrix",
"parameters": {
"threshold": 0.5
}
}
]
}
Sample Response:
{
"query_result": [
{
"confusionMatrix": {
"true_positive": 100480,
"false_positive": 100076,
"true_negative": 100302,
"false_negative": 99142
}
}
]
}
Confusion Matrix Rate
Calculates the confusion matrix rates for a classification model. For binary classifiers, users must specify a probability threshold
to count a prediction as a positive class.
Query Request:
{
"select": [
{
"function": "confusionMatrixRate",
"alias": "<alias_name> [optional string]",
"parameters": {
"threshold": "<value [float]> [required only for binary classifiers]"
}
}
]
}
Query Response:
{
"query_result": [
{
"<function_name/alias_name>": {
"true_positive_rate": "<rate> [float]",
"false_positive_rate": "<rate> [float]",
"true_negative_rate": "<rate> [float]",
"false_negative_rate": "<rate> [float]",
"accuracy_rate": "<rate> [float]"
}
}
]
}
Sample Request: Calculate the confusion matrix for a binary classifier with a threshold of 0.5 (the standard threshold for confusion matrix).
{
"select": [
{
"function": "confusionMatrixRate",
"parameters": {
"threshold": 0.5
}
}
]
}
Response:
{
"query_result": [
{
"confusionMatrixRate": {
"true_positive_rate": 0.5033513340213003,
"false_positive_rate": 0.49943606583557076,
"true_negative_rate": 0.5005639341644292,
"false_negative_rate": 0.4966486659786997
}
}
]
}
Confusion Matrix Variants
If you only want a specific metric derived from a confusion matrix, you can use one of the following functions:
truePositiveRate
falsePositiveRate
trueNegativeRate
falseNegativeRate
accuracyRate
balancedAccuracyRate
f1
sensitivity
specificity
precision
recall
For example, to return the truePositiveRate
:
{
"select": [
{
"function": "truePositiveRate",
"parameters": {
"threshold": 0.5,
"ground_truth_property":"class_a",
"predicted_property":"ground_truth_a"
}
}
]
}
Response:
{
"query_result": [
{
"truePositiveRate": 0.5033513340213003
}
]
}
AUC
The Area Under the ROC Curve can also be computed for binary classifiers.
Sample Query:
{
"select": [
{
"function": "auc",
"parameters": {
"ground_truth_property":"class_a",
"predicted_property":"ground_truth_a"
}
}
]
}
Response:
{
"query_result": [
{
"auc": 0.9192331426352897
}
]
}
Multi-class Classification
Multi-class Accuracy Rate
Calculates the global accuracy rate.
Query Request:
{
"select": [
{
"function": "accuracyRateMulticlass",
"alias": "<alias_name> [optional string]"
}
]
}
Query Response:
{
"query_result": [
{
"accuracyRateMulticlass": "<rate> [float]"
}
]
}
Example:
{
"select": [
{
"function": "accuracyRateMulticlass"
}
]
}
Response:
{
"query_result": [
{
"accuracyRateMulticlass": 0.785
}
]
}
Multi-class Confusion Matrix
Calculates the confusion matrix for a multi-class model with regard to a single class. The predicted attribute and ground truth attribute must be passed as parameters.
Query Request:
{
"select": [
{
"function": "confusionMatrixMulticlass",
"alias": "<alias_name> [optional string]",
"parameters": {
"predicted_property": "<predicted_property_name>",
"ground_truth_property": "<ground_truth_property_name>"
}
}
]
}
Query Response:
{
"query_result": [
{
"<function_name/alias_name>": {
"true_positive": "<count> [int]",
"false_positive": "<count> [int]",
"true_negative": "<count> [int]",
"false_negative": "<count> [int]"
}
}
]
}
Example:
{
"select": [
{
"function": "confusionMatrixMulticlass",
"parameters": {
"predicted_property": "predicted_class_A",
"ground_truth_property": "gt_predicted_class_A"
}
}
]
}
Response:
{
"query_result": [
{
"confusionMatrix": {
"true_positive": 100480,
"false_positive": 100076,
"true_negative": 100302,
"false_negative": 99142
}
}
]
}
Multi-class Confusion Matrix Rate
Calculates the confusion matrix rates for a multi-class classification model in regards to a single predicted class.
Query Request:
{
"select": [
{
"function": "confusionMatrixRateMulticlass",
"alias": "<alias_name> [optional string]",
"parameters": {
"predicted_property": "predicted_class_A",
"ground_truth_property": "gt_predicted_class_A"
}
}
]
}
Query Response:
{
"query_result": [
{
"<function_name/alias_name>": {
"true_positive_rate": "<rate> [float]",
"false_positive_rate": "<rate> [float]",
"true_negative_rate": "<rate> [float]",
"false_negative_rate": "<rate> [float]",
"accuracy_rate": "<rate> [float]",
"balanced_accuracy_rate": "<rate> [float]",
"precision": "<rate> [float]",
"f1": "<rate> [float]"
}
}
]
}
Example calculating the confusion matrix rates:
{
"select": [
{
"function": "confusionMatrixRateMulticlass",
"parameters": {
"predicted_property": "predicted_class_A",
"ground_truth_property": "gt_predicted_class_A"
}
}
]
}
Response:
{
"query_result": [
{
"confusionMatrixRateMulticlass": {
"true_positive_rate": 0.6831683168316832,
"false_positive_rate": 0.015653220951234198,
"true_negative_rate": 0.9843467790487658,
"false_negative_rate": 0.31683168316831684,
"accuracy_rate": 0.9378818737270875,
"balanced_accuracy_rate": 0.8337575479402245,
"precision": 0.8884120171673819,
"f1": 0.7723880597014925
}
}
]
}
If you only want a specific value from the confusion matrix rate function, you can use one of the following functions:
truePositiveRateMulticlass
falsePositiveRateMulticlass
trueNegativeRateMulticlass
falseNegativeRateMulticlass
For example, to return the truePositiveRate
:
{
"select": [
{
"function": "truePositiveRateMulticlass",
"parameters": {
"predicted_property": "predicted_class_A",
"ground_truth_property": "gt_predicted_class_A"
}
}
]
}
Response:
{
"query_result": [
{
"truePositiveRate": 0.5033513340213003
}
]
}
Multi-class F1
Calculates the components needed to compute a F1 score for a multi-class model.
In this example, the model has 3 classes: class-1
, class-2
, class-3
and the corresponding ground truth labels class-1-gt
, class-2-gt
, class-3-gt
.
Query Request:
{
"select": [
{
"function": "count",
"alias": "count"
},
{
"function": "confusionMatrixRateMulticlass",
"alias": "class-1",
"parameters": {
"predicted_property": "class-1",
"ground_truth_property": "class-1-gt"
}
},
{
"function": "countIf",
"alias": "class-1-gt",
"parameters": {
"property": "multiclass_model_ground_truth_class",
"comparator": "eq",
"value": "class-1-gt"
},
"stage": "GROUND_TRUTH"
},
{
"function": "confusionMatrixRateMulticlass",
"alias": "class-2",
"parameters": {
"predicted_property": "class-2",
"ground_truth_property": "class-2-gt"
}
},
{
"function": "countIf",
"alias": "class-2-gt",
"parameters": {
"property": "multiclass_model_ground_truth_class",
"comparator": "eq",
"value": "class-2-gt"
},
"stage": "GROUND_TRUTH"
},
{
"function": "confusionMatrixRateMulticlass",
"alias": "class-3",
"parameters": {
"predicted_property": "class-3",
"ground_truth_property": "class-3-gt"
}
},
{
"function": "countIf",
"alias": "class-3-gt",
"parameters": {
"property": "multiclass_model_ground_truth_class",
"comparator": "eq",
"value": "class-3-gt"
},
"stage": "GROUND_TRUTH"
}
]
}
Query Response:
{
"query_result": [
{
"count": 7044794,
"class-1-gt": 2540963,
"class-2-gt": 2263918,
"class-3-gt": 2239913,
"class-1": {
"true_positive_rate": 0.4318807475748368,
"false_positive_rate": 0.3060401245073361,
"true_negative_rate": 0.6939598754926639,
"false_negative_rate": 0.5681192524251633,
"accuracy_rate": 0.5994314383074935,
"balanced_accuracy_rate": 0.5629203115337503,
"precision": 0.4432575070302042,
"f1": 0.437495178612114
},
"class-2": {
"true_positive_rate": 0.42177322676881407,
"false_positive_rate": 0.3514795196528837,
"true_negative_rate": 0.6485204803471163,
"false_negative_rate": 0.578226773231186,
"accuracy_rate": 0.5756528863725469,
"balanced_accuracy_rate": 0.5351468535579652,
"precision": 0.3623427088234848,
"f1": 0.38980575845890253
},
"class-3": {
"true_positive_rate": 0.26144274353512836,
"false_positive_rate": 0.2805894672521546,
"true_negative_rate": 0.7194105327478454,
"false_negative_rate": 0.7385572564648716,
"accuracy_rate": 0.5737983254017079,
"balanced_accuracy_rate": 0.4904266381414869,
"precision": 0.3028268576818381,
"f1": 0.2806172238153916
}
}
]
}
With this result, you can calculate the weighted F1 score by multiplying each classes's F1 score by the count of the ground truth and dividing by the total count.
In this example, that would be
(class-1.f1 * class-1-gt + class-2.f1 * class-2-gt + class-3.f1 * class-3-gt) / count
and with numbers:
(0.437495178612114 * 2540963 +
0.38980575845890253 * 2263918 +
0.2806172238153916 * 2239913) / 7044794
= 0.3722898785
Object Detection
Objects Detected
For multiclass, multilabel, and regression models, querying model performance works the same for Arthur computer vision models as more tabular and NLP models. But Object Detection
computer vision has some special fields you can use when querying.
Example query fetching all bounding box fields:
{
"select": [
{
"property": "inference_id"
},
{
"property": "objects_detected"
}
]
}
The response will have 1 object per bounding box.
{
"query_result": [
{
"inference_id": "1",
"objects_detected.class_id": 0,
"objects_detected.confidence": 0.6,
"objects_detected.top_left_x": 23,
"objects_detected.top_left_y": 45,
"objects_detected.width": 20,
"objects_detected.height": 30
},
{
"inference_id": "1",
"objects_detected.class_id": 1,
"objects_detected.confidence": 0.6,
"objects_detected.top_left_x": 23,
"objects_detected.top_left_y": 45,
"objects_detected.width": 20,
"objects_detected.height": 30
},
{"inference_id": 2,
"...": "..."}
]
}
You can also specify only a single nested field:
{
"select": [
{
"property": "inference_id"
},
{
"property": "objects_detected.class_id"
},
{
"property": "objects_detected.confidence"
}
]
}
The response will have 1 object per bounding box.
{
"query_result": [
{
"inference_id": "1",
"objects_detected.class_id": 0,
"objects_detected.confidence": 0.6
},
{
"inference_id": "1",
"objects_detected.class_id": 1,
"objects_detected.confidence": 0.6
},
{"inference_id": 2,
"...": "..."}
]
}
Mean Average Precision
Calculates Mean Average Precision for an object detection model. This is used as measure of accuracy for object detection models.
threshold
determines the minimum IoU value to be considered a match for a label. predicted_property
and ground_truth_property
are optional parameters and should be the names of the predicted and ground truth attributes for the model. They default to "objects_detected"
and "label"
respectively if nothing is specified for these parameters.
Query Request:
{
"select": [
{
"function": "meanAveragePrecision",
"alias": "<alias_name> [Optional]",
"parameters": {
"threshold": "<threshold> [float]",
"predicted_property": "<predicted_property> [str]",
"ground_truth_property": "<ground_truth_property> [str]"
}
}
]
}
Query Response:
{
"query_result": [
{
"<function_name/alias_name>": "<result> [float]"
}
]
}
Example:
{
"select": [
{
"function": "meanAveragePrecision",
"parameters": {
"threshold": 0.5,
"predicted_property": "objects_detected",
"ground_truth_property": "label"
}
}
]
}
Query Response:
{
"query_result": [
{
"meanAveragePrecision": 0.78
}
]
}
Generative Text
Token Likelihood
TokenLikelihoods
attributes yield two queryable columns for that attribute with suffixes “_tokens” and “_likelihoods” appended to the attribute's name. For example, a model with a TokenLikelihoods
attribute named summary_token_probs
yields two queryable columns: summary_token_probs_tokens
and summary_token_probs_likelihoods
which represent an array of the selected tokens and an array of their corresponding likelihoods.
query = {"select": [
{"property": "summary_token_probs_tokens"},
{"property": "summary_token_probs_likelihoods"}
]}
[{ "summary_token_probs_likelihoods": [
0.3758265972137451,
0.6563436985015869,
0.32000941038131714,
0.5629857182502747],
"summary_token_probs_tokens": [
"this",
"is",
"a",
"summary"] }]
Bias
Bias Mitigation
Calculates mitigated predictions based on conditional thresholds, returning 0/1 for each inference.
Query Request:
{
"select":
[
{
"function": "biasMitigatedPredictions",
"alias": "<alias_name> [Optional]",
"parameters":
{
"predicted_property": "<predicted_property> [str]",
"thresholds":
[
{
"conditions":
{
"property": "<attribute_name> [string or nested]",
"comparator": "<comparator> [string] Optional: default 'eq'",
"value": "<string or number to compare with property>"
},
"threshold": "<threshold> [float]"
}
]
}
}
]
}
Query Response:
{
"query_result": [
{
"<function_name/alias_name>": "<result> [int]"
}
]
}
Example:
{
"select":
[
{
"function": "biasMitigatedPredictions",
"parameters":
{
"predicted_property": "prediction_1",
"thresholds":
[
{
"conditions":
[
{
"property": "SEX",
"value": 1
}
],
"threshold": 0.4
},
{
"conditions":
[
{
"property": "SEX",
"value": 2
}
],
"threshold": 0.6
}
]
}
}
]
}
Response:
{
"query_result":
[
{
"SEX": 1,
"biasMitigatedPredictions": 1
},
{
"SEX": 2,
"biasMitigatedPredictions": 0
},
{
"SEX": 1,
"biasMitigatedPredictions": 0
}
]
}
Ranked List Outputs
Performance Metrics
Precision at k
Precision is an indicator of the efficiency of a supervised machine learning model. If one model gets all the relevant items by recommending fewer items than another model, it has a higher precision. For item recommendation models, precision at k measures the fraction of all relevant items among top-k recommended items.
Query Request
{
"select": [
{
"function": "precisionAtK",
"parameters": {
"predicted_property": "predicted_items",
"ground_truth_property": "relevant_items",
"k": 5
}
}
]
}
Query Response
{
"query_result": [
{
"precisionAtK": 0.26666666666666666
}
]
}
Recall at k
Recall is an indicator of the effectiveness of a supervised machine learning model. The model which correctly identifies more of the positive instances gets a higher recall value. In case of recommendations, the recall at k is measured as the fraction of all relevant items that were recovered in top k recommendations.
Query Request
{
"select": [
{
"function": "recallAtK",
"parameters": {
"predicted_property": "predicted_items",
"ground_truth_property": "relevant_items",
"k": 5
}
}
]
}
Query Response
{
"query_result": [
{
"recallAtK": 0.26666666666666666
}
]
}
Mean Average Precision at k (MAP @ k)
The MAP@K metric is the most commonly used metric for evaluating recommender systems. It calculates the precision at every location 1 through k where there is a relevant item. Average Precision is calculated per inference, then the per inference values are averaged across a group of inferences to create Mean Average Precision.
Query Request
{
"select": [
{
"function": "mapAtK",
"parameters": {
"predicted_property": "predicted_items",
"ground_truth_property": "relevant_items",
"k": 5
}
}
]
}
Query Response
{
"query_result": [
{
"mapAtK": 0.26666666666666666
}
]
}
Normalized Discounted Cumulative Gain at k (nDCG @ k)
nDCG measures the overall reward at all positions that hold a relevant item. The reward is an inverse log of the position (i.e. higher ranks for relevant items would lead to better reward, as desired).
Similar to MAP@k, this metric calculates a value per inference, then is aggregated across inferences using an average.
Query Request
{
"select": [
{
"function": "nDCGAtK",
"parameters": {
"predicted_property": "predicted_items",
"ground_truth_property": "relevant_items",
"k": 5
}
}
]
}
Query Response
{
"query_result": [
{
"nDCGAtK": 0.26666666666666666
}
]
}
AUC
In the case of ranked list metrics, AUC measures the likelihood that a random relevant item is ranked higher than a random irrelevant item. Higher the likelihood of this happening implies a higher AUC score meaning a better recommendation system. We calculate this likelihood empirically based on the ranks given by the algorithm to all items — out of all possible pairs of type (relevant-item, non-relevant-item), AUC is a proportion of pairs where the relevant item was ranked higher than the irrelevant item from that pair.
This metric is calculated per-inference, then aggregated as an average over a group of inferences.
Query Request
{
"select": [
{
"function": "rankedListAUC",
"parameters": {
"predicted_property": "predicted_items",
"ground_truth_property": "relevant_items"
}
}
]
}
Query Response
{
"query_result": [
{
"rankedListAUC": 0.26666666666666666
}
]
}
Mean Reciprocal Rank (MRR)
Mean Reciprocal Rank quantifies the rank of the first relevant item found in the recommendation list. It takes the reciprocal of this “first relevant item rank”, meaning that if the first item is relevant (i.e. the ideal case) then MRR will be 1, otherwise it will be lower.
Query Request
{
"select": [
{
"function": "meanReciprocalRank",
"parameters": {
"predicted_property": "predicted_items",
"ground_truth_property": "relevant_items"
}
}
]
}
Query Response
{
"query_result": [
{
"meanReciprocalRank": 0.26666666666666666
}
]
}
Updated about 1 year ago